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Abstract: Model SCF MO calculations for small molecules have been employed to establish methods and param­
eters for obtaining Hamiltonian matrix elements of larger related molecules, with all electrons included. Overlap 
and kinetic energy elements are calculated exactly, while the SCF models yield values of diagonal Hamiltonian ele­
ments (a's), and parameters which are used in a modified Mulliken approximation to generate the off-diagonal 
potential-energy parts of the Hamiltonian matrix. A general discussion of the Mulliken approximation is given. 
SCF a s are found not to vary linearly with net atomic charge, nor are they adequately approximated by free-atom 
parameters. It is shown that the assumption that Hamiltonian elements are proportional to overlap integrals 
neglects elements several electron volts in magnitude. A new formula is presented for calculating these zero-overlap 
elements. 

Molecular orbitals (MO), expressed as linear com­
binations of atomic orbitals (LCAO), are the 

basis of a large body of theoretical molecular structural 
discussion, including predictions, correlations, and 
interpretations. The LCAO MO self-consistent-field 
(SCF) method3 is becoming increasingly more useful 
as multi-centered integrals become manageable upon 
large computers, but the present limits of exact applica­
tions of this method are molecules of about the size of 
ethane and diborane. It is therefore no wonder that 
chemists have turned to more approximate methods4 

for complex molecules. Many of these latter methods 
have failed to consider the explicit form of the one-
electron Hamiltonian, and nearly all of them have 
required some evaluation of parameters from experi­
ment. The extended Hiickel theory,5 which goes 

(1) Paper I in a series of four papers. 
(2) National Science Foundation Predoctoral Fellow, 1964—1966. 
(3) Current applications of Hartree-Fock theory use the LCAO 

formulation given by C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951). 
(4) (a) For a recent review of these methods, see "The Quantum 

Theory of Molecular Electronic Structure," R. G. Parr, Ed., W. A. 
Benjamin, Inc., New York, N. Y., 1963; (b) see also J. A. Pople and D. 
P. Santry, MoI. Phys., 7,269 (1963-1964); 9, 301, 311 (1965); and 
ref 5. 

(5) (a) R. Hoffmann, / . Chem. Phys., 39, 1397; 40, 3247, 2474, 2480 

beyond 7r-orbital theory, has recently been applied to a 
large number of molecular properties. However, its 
method for choosing parameters is somewhat question­
able,6 if it is to be considered as an attempt to approxi­
mate Hartree-Fock3 results. We feel that all MO 
methods should be viewed and judged as approxima­
tions within a definite theoretical framework, and we 
furthermore think that the appropriate framework is 
Roothaan's SCF theory.3 In the latter formulation, 
the MO's are eigenfunctions of a one-electron operator 
(whose matrix elements we denote as the FMATRIX), 
representing the sum of the kinetic energy of an electron 
in an MO, and the potential energy of the electron due 
to the nuclei and the total electron density of the 
molecule. Since exchange between electrons of like 
spin is provided for by this operator, the potential 
energy defined above does not contain the self-repulsion 
energy of the electron. In subsequent discussion the 
matrix elements of the potential energy part of Ro­
othaan's operator will be referred to as the UMATRIX. 

(1964); (b) R. Hoffmann and V/. N. Lipscomb, ibid., 36,2179, 3489 
(1962); 37,2872(1962). 

(6) (a) F. P. Boer, M. D. Newton, and W. N. Lipscomb, Proc. Natl. 
Acad. Sci. U. S., 52, 890 (1964); (b) M. D. Newton, F. P. Boer, W. E. 
Palke, and W. N. Lipscomb, ibid., 53, 1089 (1965). 
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One might ask, "Why not assume an unspecified 
effective one-electron Hamiltonian, and then fit its 
matrix elements to experimental numbers?" An answer 
is that one would tend to obtain a different wave 
function for each property, and therefore could not 
claim to have approximated in any unique way the 
molecular wave function; but much more important 
is our feeling that, without a clear theoretical refer­
ence point, empirical parametrization may yield mis­
leading and even spurious information in spite of a 
superficial correlation with experimental data. An­
other argument for viewing Roothaan's theory as the 
proper framework is brought out when one realizes 
that all approximate MO theories assume that the 
complete set of occupied MO's may be obtained from a 
single Hamiltonian matrix (FMATRIX). This is a 
unique property of the Roothaan theory. In general, 
one might expect to solve a different secular equation 
for each MO. Indeed this is the case for the Hartree 
method7 and Mulliken's "ionic" Hamiltonian method.8 

The present series of papers is thus a development of 
the objective of placing electronic theories of complex 
molecules on a sounder basis within the realm of the 
SCF LCAO MO method. In the present paper we 
utilize currently available, exact minimum basis SCF 
results to examine previous methods and develop a new 
method, which simulates SCF MO's for large molecules. 
We have previously referred to this method as a non-
empirical method,6 not in the sense in which an ab 
initio calculation is nonempirical, but merely to em­
phasize that the parameters of our method are not 
fitted to experimental numbers. We feel that before we 
build experimental information into our method, it is 
desirable to gain a detailed understanding of our ability 
to correlate experimental data with the method in a 
form free of parameters based on experiment. Hope­
fully we may be able in the future to improve our agree­
ment with experiment by introducing small adjust­
ments (perhaps based on empirical results or refinements 
of theory) without essentially altering our fundamental 
outlook. The development of 7r-electron methods has 
illustrated the utility of this approach: after experience 
had been gained with the nonempirical Goeppert-
Mayer-Sklar (GMS) method,4 the Pariser-Parr and the 
Pople methods yielded better correlation of spectra by 
assigning empirical values to certain integrals in the 
GMS formulation.4 

We shall find here that atomic parameters (e.g., 
VSIP's)9 are inadequate for representing the diagonal 
elements of the FMATRIX. The Mulliken integral 
approximation (modified as discussed below) is found to 
be suitable only for the potential energy part 
(UMATRIX) of the FMATRIX; both of these points 
are, we feel, implicit in Mulliken's work of 1949,8 but 
neither has been adequately explored previously. 
We shall then describe in detail a method in which the 
elements of the SCF FMATRICES of suitable small 
molecules are used for calculations of similar elements 

(7) "Quantum Theory of Atomic Structure," Vol. I, J. C. Slater, Ed., 
McGraw-Hill Book Co., Inc., New York, N. Y., 1960, p 222. 

(8) R. S. Mulliken, / . CMm. Phys., 46, 497, 675 (1949). A version in 
English is available in Technical Reports from the Physics Department, 
Spectroscopy Laboratory, The University of Chicago, for the period 
from Sept 1, 1947, to May 31, 1949. 

(9) VSIP = valence state ionization potential. Subsequent calcula­
tions of VSIP's will be based on the definition given by W. Moffitt, 
Rept. Progr. Phys., 17, 173 (1954). 

of larger, closely related compounds. With our 
method calibrated to reproduce model SCF calcula­
tions in as much detail as possible, we shall attempt in 
subsequent papers to calculate known properties 
(e.g., dissociation energies, ionization potentials, and 
charge distributions) of large boron hydride10* and 
organic10b molecules. Our reasonable agreement with 
experimental results, our ability to make several pre­
dictions, and our close approximation of SCF models 
illustrate the utility of our essentially nonempirical 
approach as a quantitative bridge between empirical 
and a priori methods. Moreover, we stress that 
although our method includes all electrons and is 
applicable to arbitrary geometries, it is basically no 
more complex than present empirical or semiempirical 
theories. 

I. Limitations 

The limitations of our proposed method are clear. 
Our procedure of extrapolation from model SCF 
calculations yields only approximate values of the 
FMATRIX elements. Antisymmetrization is not di­
rectly employed, although a method which approxi­
mates the LCAO Hartree-Fock (HF) FMATRIX will 
obviously contain antisymmetrization implicitly, and 
will uniquely determine approximate HF eigenvalues 
and eigenvectors. A present, perhaps temporary, 
limitation is the limit on computer time and memory. 
This limitation for us is not nearly so great as for the 
exact SCF LCAO calculations, where the computation 
of approximately «4 (for n basis functions) two-electron 
integrals occupied, for example, 95% of the 3 hr of 
IBM 7094 time required for a recent diborane calcula­
tion.11 Nevertheless, calculation of integrals (overlap 
and kinetic) and manipulation of matrices (multiplica­
tion and diagonalization), operations proportional 
respectively to n2 and «3, impose a current practical 
limit of about 130 basis functions on our method. The 
use of an extended basis set would severely restrict 
the number of molecules within reach. Thus only 
minimum basis sets and first-row atoms of the periodic 
table (Is orbitals included) have been considered so 
far. However, chemical information has been steadily 
forthcoming from theories of complex molecules in 
which limited basis sets are used, and, while we await 
larger computers and more efficient programs, we 
explore the development of more rigorous methods 
within the present framework. Our method is easily 
extended to larger atoms, once decisions have been 
made about which inner electrons to include. The 
inner electrons have previously been shown6a to exert 
strong influence on MO's formed from valence elec­
trons. Another limitation is that our method does 
not directly yield total molecular energies. Neverthe­
less, approximate relations in terms of eigenvalues will 
be used to calculate these energies.6* Since exact 
values of the total kinetic energy are also available, we 
are able for the first time in the realm of complex 
molecules to apply an approximate form of the virial 
theorem12 as a criterion of the goodness of a wave func-

(10) (a) Paper II: F. P. Boer, M. D. Newton, and W. N. Lipscomb, 
J. Am. Chem. Soc, 88, 2361 (1966); (b) paper III: M. D. Newton, F. 
P. Boer, and W. N. Lipscomb, ibid., 88, 2367 (1966). 

(11) Paper IV: W. E. Palke and W. N. Lipscomb, ibid., 88, 2384 
(1966). 

(12) The virial theorem equates kinetic energy (T) to the absolute 
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tion. At present our method applies only to closed-
shell, neutral systems. 

II. The Mulliken Approximation and Two-Center 
Matrix Elements 

The major equation for many LCAO methods in 
which all integrals are not calculated explicitly is the 
Mulliken approximation.8 We wish to give a brief 
discussion of this approximation and of some attempts 
to justify it. Mulliken originally postulated the 
following relation, "easily seen by inspection to be 
valid for any function f which occupies the region 
between and near the centers a and b and is symmetrical 
about the midpoint between a and b" 

/ f XaXbdr « VsS0 6 ( /fX f l*dT + / f x 6 2 d r ) (1) 

where Xa and x& are identical atomic basis functions13 

except for their different origins, and Sab is the overlap 
integral between them. In extensions of this approxi­
mation, Mulliken applied it to situations where AO's 
Xa and Xb belonged to nonequivalent atoms, and also 
introduced the following expression14 

(ab\cd) « VAftSrfKafllcc) + (aa\dd) + 

(bb\cc) + (bb\dd)] (2) 

This follows from eq 1 if f is taken as the integral 
operator Sxc(X)xd\)lrn^Ti, although such an f will 
not in general have the symmetry property stipulated 
above. Mulliken used eq 1 for f = u, a potential 
energy term in the approximate LCAO Hartree-Fock 
one-electron Hamiltonian, emphasizing that eq 1 did 
not apply to the total Hamiltonian because of the 
kinetic energy. Rigorously speaking, the permutation 
operation in the exchange moiety of u would rule out 
the use of u in eq 1. Mulliken, however, was using 
approximate expressions for the potential function and 
thus bypassed this difficulty. 

While Mulliken's approximations were stated in 
terms of integrals, subsequent discussion assumed that 
eq 1 and 2 depended on the following relation.15 

XaXb « SabiXa2 + Xb2)/2 (3) 

Ruedenberg attempted to derive eq 3 by taking the 
identity 

co co 

XaXb = QlSba'XaXa' + ZX&'X&X*-')/2 (4) 
a' b' 

and showing that for like orbitals Xa and Xb, (4) ap­
proaches (3) as center a gets close to center b.16 For 
typical distances of 1-2 A, however, it is not clear how 
good the convergence of (4) would be, and which terms 

magnitude of the total energy (£tot) only for equilibrium molecular 
geometry. Thus our comparisons of T and Etot will constitute only 
an approximate criterion because of small correction terms required for 
slight deviations from equilibrium. See discussion by J. C. Slater, J. 
Chem. Phys., 1, 687 (1933), and J. O. Hirschfelder and J. F. Kinkaid, 
Phys. Rev., 52, 658(1937). 

(13) Throughout this series of papers, Slater-type basis functions will 
be used, with Slater exponents on all atoms except hydrogen, which is 
given an exponent of 1.2. See J. C. Slater, ibid., 36, 57 (1930). Al­
though the choice of exponents is arbitrary, our main conclusions would 
be the same for any reasonable set of atomic exponents, e.g., best-atom 
exponents: E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, 2686 
(1963). 

(14) (ij I kl) = fxi(l)xiWWru) x*(2)x((2) dndr2. 
(15) Seeref4a, p 61. 
(16) K. Ruedenberg, J. Chem. Phys., 19, 1433 (1951). *„' and Xb' 

represent complete, orthogonal basis sets on centers a and b, respectively. 

would be most important. Furthermore, at the mid­
point of the a-b bond, where XaXb = (X<J2 + x&2)/2, we 
see that eq 3 greatly underestimates the value of XaXb 
for typical values of Sab. Calculations17'18 where Xa 
and Xb are 15 basis functions in the H2 molecule have 
indicated root-mean-square (rms) errors of at least 10% 
in eq 3. Additional insight into eq 3 is gained by noting 
that, when the simple two-center charge distribution 4>% 

is formed from the MO 0 = (Xa ± XJ)/(2 ± 2S)l/l and 
eq 3 is used to express the term containing X<JX!» we 
obtain <f>2 = (x<,2 + x&2)/2, which is nothing but the 
classical approximation, where atomic densities, and 
not atomic orbitals, are superposed. This paradoxical 
situation, where the approximation for XaXb appears to 
be equivalent to the classical approximation in which 
no interference terms exist, seems to cast further 
doubt on the validity of eq 3. Mulliken noted8 a 
similar situation for the integral (<jxj>\ab): identical 
results were obtained either by assuming the classical 
approximation for the density 02, or by assuming the 
expression <j> = (xa ± Xb)IO. ± 2S)1''2 and using eq 2. 

Although eq 1,2, and 3 all seem to share the above 
classical feature, it is clear that appreciable rms errors 
in eq 3 would not preclude higher accuracy in eq 1 and 
2 through a balance of errors. For instance when f 
in eq 1 is simply unity, the approximation becomes an 
identity: i.e., the simple error in eq 3 averages to zero, 
no matter how large the rms error. This underlines 
the fact that eq 3, per se, is not necessarily relevant to 
the suitability of eq 1 for given operators f. We con­
clude that little is to be gained from a priori considera­
tion of 1, 2, and 3, with the caution that only after 
extensive calculations can one judge the utility of eq 
1 for a particular f. 

Since we are trying to approximate the FMATRIX 
elements we have taken the FMATRIX and its various 
component terms (kinetic energy, nuclear attraction 
energy, etc.) for several exact minimum basis set 
calculations,11 and have examined the values of Kj3-, 
defined in eq 5 

Mij = KijSiiMu + Mj3)Il (5) 

where M is the energy matrix of interest, and i and j 
refer to basis orbitals on different centers. In Table 
I we list the values of Ki3 for the typical case of methane. 
Particularly striking is the failure, already noted by 
Mulliken,8 of eq 1 for kinetic energy and hence also for 
the FMATRIX. The currently popular Wolfsberg-
Helmholz approximation,19 which originally used eq 5 
(M = FMATRIX) for symmetry basis orbitals, allow­
ing different values of K for a-a and ir-w interactions, 
now has been extended to Slater-type basis functions, 
with a single value of K for all interactions.20 Our 
previous results for diatomics6a and present studies of 
polyatomic molecules,11 as typified by Table I, indicate 
that use of eq 5 with only one value of K, or even with a 
different Kcc and Kww, certainly cannot be expected to 
give a reliable approximation to the FMATRIX ele­
ments. Even if suitable values of Kcc and KnT could be 
found for use with multi-center symmetry orbitals, one 

(17) A. L. Companion and R. G. Parr, ibid., 35, 2268 (1961). 
(18) M. D. Newton, unpublished results. 
(19) M. Wolfsberg and L. Helmholz, J. Chem. Phys., 20, 837 (1952). 
(20) See ref 5a. A similar single-/sf method, which uses a geometric 

rather than an arithmetic mean of Mu and Mj1-, has been employed by 
L. L. Lohr and W. N. Lipscomb, / . Chem. Phys., 38, 1607 (1963). 
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NET ATOMIC CHARGE 

Figure 1. Plot of a's vs. net atomic charges for carbon atoms: 
A, CH4 ; B1C2H6 ; Q C 2 H 4 ; D, G H 2 ; E 1 H 2 CO; F, HCN; G, 
C (2s2pj2pj,2pz valence state); H, CO. The valence state atomic 
calculations are described in footnote d of Table IV. For 2p 
orbitals, the black circles denote the arithmetic mean of the three 
a values for each atom (except for BH3, where only the two oc­
cupied 2p orbitals are considered), while the short horizontal bars 
indicate the individual a's. The BH wave function (B-H = 1.21 
A) was calculated with the program referred to in footnote e of 
Table IV. See ref 31 for definition of net charges. 

would only be "passing the buck," since the diagonal 
FMATRIX elements would then contain two-center 
FMATRIX elements over atomic basis functions. On 
the other hand, Table I reveals that eq 1 approximates 
the potential energy matrix (UMATRIX) elements rea­
sonably well, all Kij being within ±0.2 of unit. How­
ever, before exploring the possibility of obtaining the 
UMATRIX of large molecules from eq 1, or the general-
Table I. K(j for Two-Center Matrix Elements of Methane" 

Total 
Hamil-
tonian 

Kinetic 
energy 

Poten­
tial 

energy 

Nuclear 
at­

traction 
energy 

2-Elec-
tron 
inter­
action 
energy 

KuB 
.K2SH 

KlpH. 
KwB. 

2.04 
1.46 
2.10 
2.95 

- 0 . 0 1 
0.37 
0.54 

- 0 . 0 4 

0.83 
1.05 
1.00 
1.19 

0.92 
1.00 
0.93 
1.09 

1.14 
0.98 
0.91 
1.05 

° Kn's from eq 5 are listed, where M is taken as various terms in 
the one-electron FMATRIX. 

ized eq 5, we must discuss the problem of one-center 
FMATRIX elements. As a final comment we point out 
that in molecules of little or no symmetry, certain two-
center FMATRIX elements may be expected to have 
nonzero values, in spite of corresponding overlap inte­
grals which vanish. In paper III166 we give some evidence 
that this basic deficiency in eq 5 leads to only small 
errors. 

III. One-Center FMATRIX Elements 
The usefulness of eq 5 for obtaining UMATRIX 

elements obviously depends in part on the availability 
of values for the diagonal elements (£/,-,•)• For con­
venience, we shall actually discuss here the diagonal 
FMATRIX elements (a's), from which the Uit values 
are easily obtained by subtracting the appropriate 
kinetic energy integrals. Traditionally, values of a, 
when not obtained exactly according to the Roothaan 
method,3 have either been left unspecified (certain 
approximate calculations of spectra and resonance 
energies were independent of a),4 simply set equal to 
the negative of VSIP's,5'19's0 or equated to the neg­
ative of VSIP's plus other terms.4 In some cases 
a's based on neutral atoms have been allowed to vary 
linearly with the net charges which the atoms acquired 
in their molecular environments.21 Mulliken made it 
clear that while net atomic charges would appreciably 
alter neutral-atom a's, much more substantial changes 
could be caused by the mere presence of neighboring 
atoms.8 Thus for the iv systems of C2H2, C2H4, and 
C6H6, where symmetry rules out charge transfer, 
Mulliken obtained a = —5.71, —5.11, and —6.58 ev, 
respectively, as opposed to the VSIP of about 11 ev. 
Our study of exact minimum basis set FMATRICES11 

has confirmed this result for -K systems22 and has shown 
in general (Figures 1-3) that VSIP's are poor approxima­
tions for a's and that no linear (or any other simple) 
relationship appears to exist between a and the net 
charge. The two diborane hydrogen a's differ by 3 ev, 
although the corresponding charges are almost equal. 
Inductive effects due to neighboring atoms often appear 
to override shielding effects from net atomic charges. 
However, there seems to be no simple explanation 
(from shielding or electronegativity arguments) for the 
fact that the carbon 2p a's of H2CO23 are more negative 
than the corresponding oxygen 2p a's (not listed), the 
carbon and oxygen net charges being respectively 
— 0.152 and —0.086. Furthermore, a's of orbitals 
which span an irreducible representation in a spherical 
environment (e.g., Ipx, 2py, and 2pz) are seen to have 
very different values in molecular environments of 
lower symmetry, a split of 16 ev occurring in C2H2. 
In section V a new method of choosing a's is proposed, 
which takes account of the above facts. 

We now turn to a discussion of off-diagonal, one-
center elements. The same reduction of symmetry 
which splits the 2p a's of certain atoms also causes the 
FMATRIX to have elements of appreciable magnitude 
between certain orthogonal orbitals on the same center. 
We shall be able to neglect24 all such elements except 
the 2s-2p elements, for which we use eq 6 below. 
Attaining magnitudes of several electron volts (Table 
II), these hitherto unappreciated elements are shown in 
papers II10a and III10b to exert a strong influence on 
approximate wave functions and must be included in 
any attempt to simulate the FMATRIX accurately. 
As an initial approximation to these zero-overlap 
(ZO) elements, we offer the following intuitively 

(21) G. W. Wheland and D. E. Mann,/. Chem.Phys., 17, 264(1949); 
A. Streitweiser, / . Am. Chem. Soc, 82, 4123 (1960). 

(22) The SCF a's of ref 11 differ somewhat from Mulliken's values 
because the former calculation was more accurate and did not rely on 
an empirical value of the carbon 2p7r VSIP. 

(23) See footnote c of Table II. 
(24) Partial justification for neglecting these elements is given in paper 

III (ref 10b). 
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Figure 2. Plot of a 's vs. net atomic charge for boron atoms: 
A, B2H6; B, BH 3 ; C, B (2s2pz2pj, valence state); D, BH. See 
also caption to Figure 1. 

reasonable formula, seen 
symmetry requirements 

by inspection to satisfy 

K3 
k 

aWa'k<*k (6) 

where a and a' are two orthogonal functions on center 
a, Sak and Sa-k are their respective overlap elements with 
all the basis functions, and 3k is some linear function 
of the a's of the orbitals concerned. For the 2s-2p 
interactions required later, we have simply taken ak 

Table II. One-Center 2s-2p F M A T R I X Elements" 

Molecule 

B2H6
6 

C2H2 ' 
Q H 4

6 

C2H6
4 

H 2 CO' 

NH 3
6 

N2O
1* 

H C N 6 

Atom 

B 
C 
C 
C 
C 
O 
N 
N" 
N/ 
O 
C 
N 

I F2s2p I , 
au 

0.104 
0.185 
0.106 
0.029 
0.170 
0.190 
0.119 
0.325 
0.078 
0.213 
0.232 
0.279 

K2.2B
ZO 

0.33 
0.48 
0.40 
0.22 
0.45 
0.64 
0.86 
0.50 
0.69 
0.49 
0.51 
0.58 

" 2p refers to the 2p orbital lying along the principal rotation axis 
of the molecule, or in the case of B2H6 and C2H4, along the B-B 
and C-C bonds, respectively. Values of X232P

20 were calculated 
using eq 6. Only the absolute value of F2s2p is listed, since the 
sign depends on the relative orientations of the local coordinate 
systems. When the positive lobe of the axial 2p orbital is directed 
toward the center of the molecule, F2s2p is negative. For N (inter­
nal) in N2O, F2s2p is positive when the positive lobe points toward 
the oxygen atom. 6 Reference 11. c J. M. Foster and S. F. Boys, 
Rev. Mod. Phys., 32, 303 (1960). d M. D. Newton, unpublished, 
using method described in ref 11, with Slater basis set and N - N = 
1.126 A, N - O = 1.186 (A E. Douglas and C. K. Moller, J. Chem. 
Phys., 22, 275 (1954). • Terminal nitrogen, t Internal nitrogen. 

+.10 +.20 

NET ATOMIC CHARGE 

Figure 3. Plot of a 's vs. net atomic charge for hydrogen a toms: 
A, B H ; B, H (free atom); C 1 B H 3 ; D , B2H6 (terminal); E 1 B 2 H 6 
(bridge); F , H 2 CO; G, C2H6; H, CH 4 ; I, C2H4; J, C2H2; K, 
HCN. See also caption to Figure 1. 

as ak, with the values of K2s2p
zo to be based on 

those listed in Table II for various minimum basis 
FMATRICES. In spite of their scatter, we see that a 
value of ^T20 close to 0.5 will generally give a reasonable 
approximation to F2s2p. The only other one-center 
element remaining to be discussed, Fls2s, will be found 
to be remarkably constant, and can be treated anal­
ogously to the two-center elements since it corresponds 
to a nonzero overlap integral. 

IV. Conditions for Rotational Invariance 

Before eq 5 and 6 can be used to generate matrix 
elements for large molecules of arbitrary geometry, we 
must investigate the behavior of these equations under 
linear, nonsingular, transformations of the basis set. 
LCAO MO's should be invariant under any such 
transformations. Since eq 5 and 6 are intended for 
use with Slater-type atomic basis functions,13 the only 
transformations of interest to us for first-row atoms are 
those which transform the 2p orbitals of a given atom 
among themselves or, equivalently, which rotate the 
local coordinate systems (CS) at the various atomic 
centers with respect to the fixed molecular CS, if the 
2p-basis functions are always taken as 2P1, 2py, and 
2pj. in the local CS. Defining such a transformation by 
the matrix T, with xr = llxjTji, we find that the over-

i 
lap matrix and the energy matrix M of eq 5 become 
respectively TST and TMT.2i It is apparent then from 
inspection that a sufficient, although not necessary, 
condition for the proper transformation of eq 5 is that 
all three 2p orbitals have the same diagonal matrix 
element (Mu) and interact with other orbitals with the 
same value of Ky. The rotational invariance of eq 6 
is not so obvious. However, it is easily verified that 
the condition of a single value of a2p and ^2s2pZO for each 
atom guarantees proper behavior of eq 6. 

One consequence of eq 5 is that each 2p-2p matrix 
element My may be considered the sum of a a-a and a 
7r-7r interaction (with respect to the axis joining the two 
centers).263 As stated above, cross-terms are neglected 
by eq 5 because the corresponding overlap integrals 
are zero. We may thus rewrite eq 5 as 

Mij = {K'uS'i, + K'ijS'ijXMn + Mjj)/2 (7) 

where S'y and SFy are the overlap integrals due to the 

(25) fa = Tjt; T is a real matrix. 
(26) (a) Similarly in interactions between s and p orbitals, only the a 

component of the p orbital is used by eq 5. (b) One such formula (F13-
= Sij(2 — \Sij\){Fu + Fjf)/2) has been introduced by L. C. Cusachs, 
J. Chem. Phys., 43, S157 (1965). 
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Table III. Coefficients for UMATRIX Elements" 

A^a2s(one-center) 
•^ls2s 

- ^ l s 2 p 

^ 2 s 2 s 

K>s2p 

"2pff2p(7 
J»-2p7r2p7r 

^2p7r2p7TC 

Ku H 

£ 2 s H 

-K2 pH 

^HH 

CH4 

0.66 

0.83 
1.05 
1.00 
1.19 

C2H2 

0.66 
0.82 
0.82 
1.08 
1.09 
1.12 
1.07 

0.83 
1.07 
0.95 
1.48 

C2H4 

0.66 
0.81 
0.82 
1.02 
1.06 
1.05 
1.10 
0.73 
0.83 
1.05 
0.98 
1.18 

C2H6 

0.66 
0.80 
0.81 
0.94 
1.00 
0.99 

0.69 
0.83 
1.04 
0.99 
1.15 

HCN 

0.66 
0.81 
0.82 
1.07 
1.11 
1.17 
1.05 

0.83 
1.07 
0.92 

H2CO 

0.66 
0.81 
0.82 
1.00 
1.05 
1.07 
1.05 
0.74 
0.83 
1.04 
0.94 
1.20 

NH 3 

0.66 

0.84 
1.06 
1.02 
1.19 

BH3
d 

0.66 

0.81 
1.05 
1.02 
1.16 

B2Hg 

0.66 
0.81 
0.82 
1.05 
1.11 
1.13 

1.14« 
0.81 
1.04 
1.05 
1.13 

0 The K's listed were obtained from eq 5 and averaged over certain similar interactions via eq 8. H denotes the hydrogen Is orbital. All 
values are based on the same wave functions as were used in Table II. Except for the first entry, all K's refer to two-center interactions. 
b This row represents ir-?r interactions in the 7r MO's of C2H2, C2H4, HCN, and H2CO. c This row contains K's for the in-plane TT-T inter­
actions in C2H4 and H2CO, the C2H6 TT-TT interaction, and an average of the two K's for the B2H6 7r-7r interactions (see footnote e). d For 
BH3, a2p was taken as the a of one of the in-plane 2p orbitals, since the third 2p orbital is unoccupied. " Since the value of KTT for B2H6 is 
an average value (as required in paper II), it differs appreciably from other values in the same row. 

components of 2p orbitals i and j respectively parallel 
and perpendicular to the axis joining the two centers. 
Since both S"^ and S*y- transform individually in the 
same manner as the total overlap elements (proved in 
the Appendix), eq 7 is easily seen to transform cor­
rectly with different values for K"tj and £""„-, provided that 
they both obey the restrictions imposed on the single K^ 
of eq. 5. 

Equations 5 and 7 transform correctly essentially 
because the Afy-'s are linear in the overlap integrals. 
Equation 6, although quadratic in overlap, nevertheless 
behaves properly because the summation is over the 
entire basis set. In general, however, nonlinear func­
tions of overlap will not possess the requisite rotational 
invariance.26b 

Since we plan to use (5) and (7) with M = UMATRIX, 
the condition that Af,-,- be constant for all 2p orbitals on 
an atom is in conflict with our finding (Figures 1-3) that 
the 2p a's (and hence also the diagonal UMATRIX 
elements) are often widely split. A partial resolution 
of this problem follows from the observation that 
although MO's should be invariant under arbitrary 
transformations of the basis set, in certain cases a unique 
basis set may be singled out. For example, in planar 
systems, where there is considerable anisotropy (Figure 
1), we may rigorously separate <r and IT basis functions. 
In such a situation it seems reasonable to assign dif­
ferent Ky\ and a's to the a and IT 2p orbitals, while 
requiring invariance only with respect to rotation in the 
molecular plane. This procedure is followed in paper 
III. Hopefully, methods will be discovered for un­
ambiguously introducing atomic anisotropics into 
more general systems. 

V. Proposal of New Method 
Utilizing all of the above discussion, we now outline 

a detailed procedure for applying known molecular 
SCF results to the calculation of wave functions for 
molecules not yet accessible to exact SCF methods. 
We shall then illustrate for the case of CH4 the advan­
tage of this procedure over other possible methods of 
choosing parameters. 

Step 1. Choice of a's. In choosing a's for the atoms 
in a series of related, large molecules, one must find 
exact calculations for small molecules whose atoms see 
environments as similar as possible to those of the 

larger systems. The present body of SCF results11'23 

allows the following distinctions to be made: tetra-
hedral, trigonal, and digonal carbon atoms in pure 
hydrocarbons; trigonal carbon atoms bonded to 
oxygen and nitrogen;27 the cyano carbon atom; tetra-
hedral, trigonal, and digonal nitrogen atoms; the 
carbonyl oxygen atom and hydrogen atoms bonded to 
all of the above carbon and nitrogen atoms (except 
digonal nitrogen). At present the only model SCF 
boron atoms available are those in BH3 and B2H6. 
The latter calculation allows bridge and terminal 
hydrogen atoms to be distinguished. In accord with 
the discussion in the previous section, for atoms in a 
plane, a2pir values can be taken directly, while a simple 
average of the other two a's is used for a2p<T. An aver­
age of all three a's will be taken for a2p of atoms in 
nonplanar molecules.28 Otherwise a's are to be 
transferred directly from the appropriate models. 

Step 2. Overlap and kinetic energy integrals are 
calculated exactly. 

Step 3. UMATRIX Elements. Diagonal elements 
of the UMATRIX, obtained by subtracting the diagonal 
kinetic energy integrals from the a's, are used with the 
overlap elements to generate two-center UMATRIX 
elements via eq 5. In assigning values of K to be used 
in eq 5, one must decide how many different types 
of two-center interactions it is feasible to distinguish. 
This decision will be based on the values of K listed in 
Table III for several molecules, including all those used 
as models in papers II and III. These K's were cal­
culated according to eq 5, using values of diagonal 
UMATRIX elements obtained from ref 11 and 23. 
We then averaged over certain similar interactions 
according to eq 8, where the individual K,/s within our 
groupings are weighted by the absolute magnitude of 
the corresponding UMATRIX elements (U^). 

K^ = (ZKaIUMTiVJiI) (8) 

The subscripts a,b on K refer to those given in the 
first column of Table III. Since most of the .K's in 
Table III are quite close to unity, one might initially 

(27) In paper III, parameters for this type of carbon atom are dis­
cussed. 

(28) In paper III, distinct 7r-system parameters will be maintained for 
the unsaturated moieties of alkyl-substituted planar systems, even 
though the molecules are nonplanar. 
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— < * 1 . 

— Otis 

— «2p 

— a H 

— Fls2s 

— f l s H 

— f&H 
— f2pH 

- ^ H H 

- C l 

— «2 

— e3 

?H 
OPcH 

SCF 

11.269 
1.432 
0.349 
0.507 
2.640 
0.787 
0.729 
0.253 
0.274 

11.271 
0.932 
0.542 

+0.133 
+0.780 

a's and K's 
SCF C2H6* 

11.276 
1.449 
0.364 
0.501 
2.640 
0.787 
0.724 
0.250 
0.263 

11.279 
0.932 
0.544 

+0 .168 
0.767 

a's from S C F C H 4 ; 
2-center K's = 1 

11.269 
1.432 
0.349 
0.507 
2.642 
0.949 
0.689 
0.254 
0.230 

11.283 
0.864 
0.558 

+0.188 
+0.693 

a's from SCF 
valence-state 

carbon".d 

11.214 
1.292 
0.338 
0.500 
2.627 
0.947 
0.651 
0.251 
0.229 

11.229 
0.751 
0.549 

+0.102 
0.772 

a's and K's 
from 

SCF CH"./ 

11.260 
1.295 
0.309 
0.557 
2.624 
0.785 
0.709 
0.280 
0.239 

11.263 
0.860 
0.599 

- 0 . 0 6 1 
0.793 

" The symbols in column 1 refer to diagonal (a) and off-diagonal (F) FMATRIX elements, eigenvalues (e), Mulliken (ref 31) charge on H 
(<?H), and C-H overlap population (OPCH), where H denotes the hydrogen Is orbital. AU energies are in au. The CH4 and C2H6 SCF param­
eters are from ref 11, the K's from Table III. For both K = 1 calculations, the correct one-center Kisz, was maintained. b Best agreement 
with SCF CH4.

 c Two-center K's - 1. d The wave function for the valence state (ref 9) of carbon (2s2pa:2p1,2pi) was calculated with the 
"Atomic SCF Program No. 3," described by C. C. J. Roothaan and P. S. Bagus in "Methods in Computational Physics," Vol. II, Academic 
Press Inc., New York, N. Y., 1963, pp 47-94. The Is a and 2s and 2p a's were taken respectively from the closed-shell and open-shell 
FMATRIX. aH was taken as the energy of the hydrogen atom. e The CH (27r) wave function, with methane C-H distance, was obtained 
from R. K. Nesbet's open-shell diatomic wave function program (Rev. Mod. Phys., 35, 552 (1963)), as modified by R. M. Stevens. / /STHH = 
1. 

attempt to use eq 5 for complex molecules with all 
KRb set equal to unity (see Table IV). However, we 
notice that the value of Kab for each chosen class of 
interactions is nearly constant, irrespective of the atom 
involved, except for hydrogen, which is treated sepa­
rately, and the ir-ir interactions in B2H6 (see paper II). 
Remarkably, a K of 0.66 is seen to specify completely 
all one-center, ls-2s UMATRIX elements in Table III. 
The anomalously large ATHH for C2H2 is insignificant, 
since it corresponds to a very small UMATRIX element. 
Even in the cases of greatest deviation from constancy, 
the spread in K's is only <~0.1. This result suggests 
that it is reasonable to maintain the same degree of 
differentiation in applications to larger systems. Hence 
the Arab's for our subsequent calculations will be taken 
directly from Table III. As indicated in section IV we 
shall always be permitted to maintain distinct values of 
K2pt,2pa and Kip„2pw, and also an additional K2pn2p„ for 
the it systems of planar molecules. 

Step 4. ZO Elements. The one-center, 2s-2p 
zero-overlap elements F2s2p are obtained from eq 6 
with a value of Kzo based on Table II. 

Step 5. The kinetic energy matrix and the 
UMATRIX are combined into the FMATRIX, and 
the secular equation is solved for eigenvalues and 
eigenvectors. 

The first test of our proposed method is its ability to 
reproduce the model wave functions after the requisite 
averaging of parameters has been performed. In 
papers II and III we shall see that the eigenvalues are 
reproduced in the correct order29 with accuracy usually 
better than ±0.05 au, while correspondingly reasonable 
agreement is obtained for charge distributions. 

The transferability of parameters from one molecule 
to another is strikingly illustrated in Table IV, where 
SCF C2H6 parameters (a's and K's) accurately reproduce 
the CH4 wave function. We note that the use of the 
correct CH4 a's, but two-center K's = 1, leads to 

(29) A slight exception occurs for B2H6 (ref 10a), where two near-
degenerate levels are inverted. 

poor results, while equally bad agreement with column 
2 is obtained from use of free-atom or diatomic (CH) 
parameters. The ability of C2H6 parameters to generate 
the CH4 wave function gives us good reason to expect 
that the same parameters should also be a suitable 
basis for calculations on larger saturated hydrocarbons. 
We also feel that ethylene is a suitable model for large 
unsaturated hydrocarbons, while the SCF H2CO, 
HCN, and NH3 SCF calculations will allow heteroatoms 
and inductive effects to be included. These hypotheses 
are tested in paper III, while paper II examines the 
usefulness OfBH3 and B2H6 in obtaining wave functions 
for the larger boron hydrides. Clearly, as more exact 
SCF results become available, further refinements 
will become possible, allowing a finer differentiation 
among atoms and types of interactions. The transfer­
ability of SCF FMATRIX elements has previously been 
discussed in the more limited context of w systems by 
Orloff and Fitts. *> 

The regular relationships that we have described in 
previous sections between UMATRIX and SMATRIX 
(overlap) elements have proved very useful as a partial 
check on SCF LCAO calculations, and have enabled us 
to detect by inspection certain errors in our own and 
published SCF reports. 

VI. Charge Distributions 

We shall briefly discuss the charge distributions to be 
expected from our wave functions and consider the 
usefulness of Mulliken charges8'3 J in representing these 
distributions. First we must decide how important is 
our failure to allow fine adjustments in our a's by some 
self-consistent technique. We have already noted that 
Mulliken found slight differences in a2px for carbon 
atoms in different unsaturated nonpolar systems, 
although they were all within a range of less than 2 ev. 

(30) M. K. Orloff and D. D. Fitts, J. Am. Chem. Soc, 85, 3721 
(1963). 

(31) R. S. Mulliken, /. Chem. Phys., 23, 1833, 1841, 2238, and 2343 
(1955). 
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One might expect in general that the a's of a carbon 
atom in a hydrocarbon would depend on the number of 
carbon and hydrogen atoms to which it was bonded. 
We can only point to the remarkable similarity of the 
carbon a's for CH4 and C2H6. With regard to the 
charge dependence of a's we emphasize that although 
Figure 1 does indicate some variation of a's with 
charge, no simple functional relationship is apparent. 
We believe that for cases of only moderate intramolec­
ular transfer (relative to that in the model wave func­
tions), our choice of a's is quite reasonable. For 
carbonyl molecules, a large portion of the charge 
transfer should be accounted for by use of H2CO as a 
model. Some exaggeration of charge transfer may be 
expected when a's from nonpolar model compounds 
are used for larger polar molecules (e.g., fulvene and 
azulene). 

LCAO wave functions are generally accompanied by 
the easily calculated Mulliken point charges.31 The 
question of how meaningful these charges are has 
received little attention. We decided that an appro­
priate criterion would be to calculate the dipole mo­
ments for all of our large-molecule calculations in 
terms of these point charges, and then compare these 
with the exact dipole moments. For this purpose we 
have written an IBM 7094 program which calculates 
the exact dipole moment for any LCAO wave function 
using a Slater-type basis set. We shall see10 that in 
general the Mulliken charges yield surprisingly accurate 
dipole moments. Notable exceptions are some boron 
hydrides,103 and some nitrogen heterocycles10b in which 
a lone-pair sp2 hybrid is generally assumed to exist. 
The large atomic dipoles associated with hybrid lone 
pairs disappear in the Mulliken approximation, being 
essentially replaced by the vanishing one-center overlap 
integrals between 2s and 2p orbitals. Hence the 
Mulliken charges should be used with caution. 

VII. Relation to Other Methods 

Although the relationship of our method to other 
approximate MO methods is implicit in the previous 
discussions, we briefly emphasize some important 
differences. As opposed to 7r-only methods,30'32 we in­
clude all electrons, thus permitting an unbiased evalua­
tion of the importance of polarization of the core elec­
tron density. We do not resort to the approximation of 
zero-differential-overlap32 (ZDO) and empirical evalua­
tion of integrals basic to the Pariser-Parr (P-P) 
method.32 Although the latter approach has recently 
been applied to certain limited a systems (a diatomic 
a bond33 and a hydrogen bond34), our investigation of 
multi-centered integrals indicates that the validity of 
extending the ZDO approximation to arbitrary molec­
ular systems is still open to question, whereas our 
method is completely general. With regard to the 
extended Hiickel method,6 we have shown previously 
for CH4

6b that a fortuitous balance of errors results in 
excellent agreement with the SCF calculation. In­
clusion of Is electrons spoils this agreement. We 
conclude that methods which depend on VSIP's for 
a's, the Wolfsberg-Helmholz approximation, and 

(32) R. Pariser and R. G. Parr, / . Chem. Phys., 21, 767 (1953). 
(33) H. A. Pohl, R. Rein, and K. Appel, ibid., 41, 3385 (1964). 
(34) R. Rein and F. Harris, ibid., 41, 3393 (1964). 

valence electrons only cannot be considered valid 
approximation to the exact LCAO method, however 
useful and accurate their correlations of experimental 
data may be. The P-P MO method may possibly be 
viewed as an attempt to transcend the MO framework 
by empirically including correlation energy in its 
coulomb integrals. We feel that the importance of such 
extensions of MO theory will be more clearly under­
stood when more attention has been paid to accurate 
approximations within the strict MO framework. 

VIII. Summary 

For clarity we summarize the steps in our method. 
After interatomic distances and orbital exponents 
have been chosen: (1) a's are selected from the 
FMATRIX of the model compounds; (2) kinetic 
energy and overlap integrals are calculated exactly; 
(3) using K's obtained from the UMATRIX of model 
compounds, UMATRIX elements are calculated ac­
cording to eq 5 or 7; (4) one-center 2s-2p FMATRIX 
elements are calculated using eq 6; (5) the complete 
FMATRIX is assembled and the secular equation is 
solved. 
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Appendix 

We wish to prove that when the overlap matrix 
involving 2p-2p interactions is partitioned into a cr-a 
and a -K—K matrix (S = S" + S"), each component 
matrix transforms in the same manner as S itself, when 
the transformation matrix T rotates local coordinate 
systems on the atomic centers which have 2p orbitals;33 

i.e., S' = TSTimplies 

(S")' = fS'T (Al) 

and hence likewise for S*. To verify eq Al, we note 
that T is simply a diagonal block matrix, with a 3 X 3 
block Ta for each center, while S" is composed of 3 X 3 
blocks S"ab for all pairs of centers a and b. For each 
pair of centers, the vector Rab is defined to extend from 
a to b. The elements of S"ab may be written36 as 

S'it.a)Ub) = KabXi(a)Xj(b) (A2) 

where i(a), j(b), and x,(0), Xj{b) refer respectively to the 
x, y, and z 2p orbitals and to the x, y, and z components 
of Rab, based on the coordinate systems of a and b. 
Kab is a constant for all a-b interactions. Since by 
definition of T 

3 

Xi'M = LuXk(a)Taki 
k 

we have 

(S\b)' = taSabT
b (A3) 

from which eq Al follows. 

(35) In this discussion S and T are the blocks of the total overlap and 
transformation matrices which involve only 2p orbitals. 

(36) R. A. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 36, 2179 
(1962). 
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